5. Bibliography

1. Abbott LF, Varela JA, Sen K and Nelson SB . Synaptic depression and cortical gain control. Science 275: 220-224, 1997.

2. Achermann P and Borbely AA . Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81: 213-222, 1997.

3. Adams PR, Constanti A, Brown DA and Clark RB . Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296: 746-749, 1982.

4. Amzica F and Massimini M . Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 12: 1101-1113, 2002.

5. Amzica F, Massimini M and Manfridi A . Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22: 1042-1053, 2002.

6. Amzica F and Steriade M . Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation. J Neurosci 15: 4658-4677, 1995a.

7. Amzica F and Steriade M . Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. J Neurophysiol 73: 20-38, 1995b.

8. Amzica F and Steriade M . The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 49: 952-959, 1997.

9. Amzica F and Steriade M . Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82: 671-686, 1998a.

10. Amzica F and Steriade M . Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107: 69-83, 1998b.

11. Brumberg JC, Nowak LG and McCormick DA . Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci 20: 4829-4843, 2000.

12. Cohen I, Navarro V, Clemenceau S, Baulac M and Miles R . On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298: 1418-1421, 2002.

13. Connors BW and Gutnick MJ . Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13: 99-104, 1990.

14. Contreras D and Steriade M . Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15: 604-622, 1995.

15. Contreras D, Timofeev I and Steriade M . Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494 ( Pt 1): 251-264, 1996.

16. Cragg BG . The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101: 639-654, 1967.

17. Crochet S, Chauvette S, Boucetta S and Timofeev I . Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 21: 1030-1044, 2005.

18. Cudmore RH and Turrigiano GG . Long-term potentiation of intrinsic excitability in LV visual cortical neurons. J Neurophysiol 92: 341-348, 2004.

19. DeFelipe J and Farinas I . The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39: 563-607, 1992.

20. Desai NS, Rutherford LC and Turrigiano GG . Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci 2: 515-520, 1999.

21. Dichter MA and Ayala GF . Cellular mechanisms of epilepsy: a status report. Science 237: 157-164, 1987.

22. Faber ES, Callister RJ and Sah P . Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J Neurophysiol 85: 714-723, 2001.

23. Fisher RS, Webber WR, Lesser RP, Arroyo S and Uematsu S . High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 9: 441-448, 1992.

24. Fujiwara-Tsukamoto Y, Isomura Y, Nambu A and Takada M . Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 119: 265-275, 2003.

25. Galarreta M and Hestrin S . Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci 1: 587-594, 1998.

26. Gray CM and McCormick DA . Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274: 109-113, 1996.

27. Grenier F, Timofeev I and Steriade M . Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. J Neurophysiol 89: 841-852, 2003.

28. Gruner JE, Hirsch JC and Sotelo C . Ultrastructural features of the isolated suprasylvian gyrus in the cat. J Comp Neurol 154: 1-27, 1974.

29. Halasz P . Runs of rapid spikes in sleep: a characteristic EEG expression of generalized malignant epileptic encephalopathies. A conceptual review with new pharmacological data. Epilepsy Res Suppl 2: 49-71, 1991.

30. Heinemann U, Lux HD and Gutnick MJ . Extracellular free calcium and potassium during paroxsmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237-243, 1977.

31. Hille B . Ionic channels of excitable membranes . Sunderland, Massachusetts: Sinauer Associates INC, 2001.

32. Hirst GD, Johnson SM and van Helden DF . The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol 361: 315-337, 1985.

33. Johnston D and Brown TH . Control theory applied to neural networks illuminates synaptic basis of interictal epileptiform activity. Adv Neurol 44: 263-274, 1986.

34. Katz B . The release of neuronal transmitter substances . Springfield, Illinois: Thomas, 1969.

35. Kotagal P . Multifocal independent Spike syndrome: relationship to hypsarrhythmia and the slow spike-wave (Lennox-Gastaut) syndrome. Clin Electroencephalogr 26: 23-29, 1995.

36. Lancaster B and Nicoll RA . Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389: 187-203, 1987.

37. Macleod GT, Marin L, Charlton MP and Atwood HL . Synaptic vesicles: test for a role in presynaptic calcium regulation. J Neurosci 24: 2496-2505, 2004.

38. Massimini M and Amzica F . Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol 85: 1346-1350, 2001.

39. McCormick DA, Connors BW, Lighthall JW and Prince DA . Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54: 782-806, 1985.

40. Neckelmann D, Amzica F and Steriade M . Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. J Neurophysiol 80: 1480-1494, 1998.

41. Nelson SB and Turrigiano GG . Synaptic depression: a key player in the cortical balancing act. Nat Neurosci 1: 539-541, 1998.

42. Nicoll RA . The coupling of neurotransmitter receptors to ion channels in the brain. Science 241: 545-551, 1988.

43. Niedermeyer . Abnormal EEG patterns: epileptic and paroxysmal. In: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields , edited by Niedermeyer E LdSFBM: Williams and Wilkins, 1999a, p. 235-260.

44. Niedermeyer . Epileptic seizure disorders. In: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields , edited by Niedermeyer E LdSFBM: Williams and Wilkins, 1999b, p. 476-585.

45. Pare D and Lang EJ . Calcium electrogenesis in neocortical pyramidal neurons in vivo. Eur J Neurosci 10: 3164-3170, 1998.

46. Pennefather P, Goh, J.W . Relationship between calcium load and the decay of IAHP in bullfrog ganglion neurons. Soc. Neurosci , Abstr, 1988.

47. Pennefather P, Lancaster B, Adams PR and Nicoll RA . Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci U S A 82: 3040-3044, 1985.

48. Rutecki PA . Neuronal excitability: voltage-dependent currents and synaptic transmission. J Clin Neurophysiol 9: 195-211, 1992.

49. Sah P . Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. J Neurophysiol 68: 2237-2247, 1992.

50. Sah P . Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19: 150-154, 1996.

51. Sah P and Faber ES . Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66: 345-353, 2002.

52. Sah P and McLachlan EM . Ca(2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca(2+)-activated Ca2+ release. Neuron 7: 257-264, 1991.

53. Sah P and McLachlan EM . Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68: 1834-1841, 1992.

54. Sammaritano M, Gigli GL and Gotman J . Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology 41: 290-297, 1991.

55. Sanchez-Vives MV and McCormick DA . Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3: 1027-1034, 2000.

56. Schwindt PC and Crill WE . Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74: 2220-2224, 1995.

57. Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC and Crill WE . Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 59: 424-449, 1988.

58. Shao LR, Halvorsrud R, Borg-Graham L and Storm JF . The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521 Pt 1: 135-146, 1999.

59. Simon NR, Manshanden I and Lopes da Silva FH . A MEG study of sleep. Brain Res 860: 64-76, 2000.

60. Steriade M . Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroencephalogr Clin Neurophysiol 37: 247-263, 1974.

61. Steriade M and Amzica F . Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1: 1-10, 1998.

62. Steriade M, Amzica F and Contreras D . Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol 90: 1-16, 1994a.

63. Steriade M, Amzica F, Neckelmann D and Timofeev I . Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J Neurophysiol 80: 1456-1479, 1998a.

64. Steriade M and Contreras D . Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci 15: 623-642, 1995.

65. Steriade M and Contreras D . Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol 80: 1439-1455, 1998.

66. Steriade M, Contreras D and Amzica F . Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci 17: 199-208, 1994b.

67. Steriade M, Contreras D, Amzica F and Timofeev I . Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci 16: 2788-2808, 1996.

68. Steriade M, Nunez A and Amzica F . Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13: 3266-3283, 1993a.

69. Steriade M, Nunez A and Amzica F . A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13: 3252-3265, 1993b.

70. Steriade M, Timofeev I, Durmuller N and Grenier F . Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. J Neurophysiol 79: 483-490, 1998b.

71. Steriade M, Timofeev I and Grenier F . Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85: 1969-1985, 2001.

72. Storm JF . Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385: 733-759, 1987.

73. Storm JF . Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83: 161-187, 1990.

74. Szentagothai J . The use of degeneration methods in the investigation of short neuronal connections. In: Degeneration Patterns in the Nervous System , edited by Singer MS, P. Amsterdam: Progress in Brain Research, Elsevier, 1965, p. 1-32.

75. Tasker JG and Dudek FE . Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy. Neurochem Res 16: 251-262, 1991.

76. Thomson AM, West DC, Hahn J and Deuchars J . Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol 496 ( Pt 1): 81-102, 1996.

77. Timofeev I, Bazhenov M, Sejnowski T and Steriade M . Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities. Proc Natl Acad Sci U S A 99: 9533-9537, 2002a.

78. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ and Steriade M . Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10: 1185-1199, 2000a.

79. Timofeev I, Grenier F and Steriade M . Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J Neurophysiol 80: 1495-1513, 1998.

80. Timofeev I, Grenier F and Steriade M . Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J Physiol Paris 94: 343-355, 2000b.

81. Timofeev I, Grenier F and Steriade M . Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 98: 1924-1929, 2001.

82. Timofeev I, Grenier F and Steriade M . The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures. Neuroscience 114: 1115-1132, 2002b.

83. Timofeev I, Grenier F and Steriade M . Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J Neurophysiol 92: 1133-1143, 2004.

84. Timofeev I and Steriade M . Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76: 4152-4168, 1996.

85. Timofeev I and Steriade M . Neocortical seizures: initiation, development and cessation. Neuroscience 123: 299-336, 2004.

86. Topolnik L, Steriade M and Timofeev I . Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo. Eur J Neurosci 18: 486-496, 2003a.

87. Topolnik L, Steriade M and Timofeev I . Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13: 883-893, 2003b.

88. Traub RD, Buhl EH, Gloveli T and Whittington MA . Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J Neurophysiol 89: 909-921, 2003.

89. Ward AA, Jr. and Schmidt RP . Some properties of single epileptic neurons. Arch Neurol 5: 308-313, 1961.

90. Xiong ZQ, Saggau P and Stringer JL . Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci 20: 1290-1296, 2000.

© Soufiane Boucetta, 2005