Collection Mémoires et thèses électroniques
Accueil À propos Nous joindre

Bibliographie

1.     Marieb, E.N., Anatomie et physiologie humaines 2e édition . Édition du Renouveau Pédagogique Inc. ed. 1999, Saint-Laurent: The Benjamin/Cummings Publisching Company, Inc.

2.     Brooks, S.V., Current topics for teaching skeletal muscle physiology. Adv Physiol Educ, 2003. 27 (1-4): p. 171-82.

3.     Blaak, E.E. and W.H. Saris, Substrate oxidation, obesity and exercise training. Best Pract Res Clin Endocrinol Metab, 2002. 16 (4): p. 667-78.

4.     Zierath, J.R. and Y. Kawano, The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab, 2003. 17 (3): p. 385-98.

5.     Baron, A.D., Insulin and the vasculature - Old actors, new roles. Journal of Investigative Medicine, 1996. 44 (8): p. 406-412.

6.     Baron, A.D., Vascular reactivity. Am J Cardiol, 1999. 84 (1A): p. 25J-27J.

7.     Aldhahi, W. and O. Hamdy, Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep, 2003. 3 (4): p. 293-8.

8.     Prins, J.B., Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab, 2002. 16 (4): p. 639-51.

9.     Ritchie, S.A., et al., The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci (Lond), 2004.

10.     Lafontan, M., [Metabolic and secretory activities of adipocytes]. Pathol Biol (Paris), 2003. 51 (5): p. 238-40.

11.     Faraj, M., H.L. Lu, and K. Cianflone, Diabetes, lipids, and adipocyte secretagogues. Biochem Cell Biol, 2004. 82 (1): p. 170-90.

12.     Baudler, S., W. Krone, and J.C. Bruning, Genetic manipulation of the insulin signalling cascade in mice--potential insight into the pathomechanism of type 2 diabetes. Best Pract Res Clin Endocrinol Metab, 2003. 17 (3): p. 431-43.

13.     O'Brien, S.F., et al., Vascular wall reactivity in conductance and resistance arteries: differential effects of insulin resistance. Can J Physiol Pharmacol, 1998. 76 (1): p. 72-6.

14.     Muzykantov, V.R., Targeting of superoxide dismutase and catalase to vascular endothelium. J Control Release, 2001. 71 (1): p. 1-21.

15.     Baumgartner-Parzer, S.M. and W.K. Waldhausl, The endothelium as a metabolic and endocrine organ: its relation with insulin resistance. Exp Clin Endocrinol Diabetes, 2001. 109 Suppl 2 : p. S166-79.

16.     Vincent, M.A., M. Montagnani, and M.J. Quon, Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diab Rep, 2003. 3 (4): p. 279-88.

17.     Wheatcroft, S.B., et al., Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med, 2003. 20 (4): p. 255-68.

18.     Matsuoka, H., Endothelial dysfunction associated with oxidative stress in human. Diabetes Res Clin Pract, 2001. 54 Suppl 2 : p. S65-72.

19.     Triggle, C.R., et al., The endothelium in health and disease--a target for therapeutic intervention. J Smooth Muscle Res, 2003. 39 (6): p. 249-67.

20.     Zierler, K., Whole body glucose metabolism. Am J Physiol, 1999. 276 (3 Pt 1): p. E409-26.

21.     Mueckler, M., Facilitative glucose transporters. Eur J Biochem, 1994. 219 (3): p. 713-25.

22.     Moore, M.C., A.D. Cherrington, and D.H. Wasserman, Regulation of hepatic and peripheral glucose disposal. Best Pract Res Clin Endocrinol Metab, 2003. 17 (3): p. 343-64.

23.     Roy, D., et al., Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle. Am J Physiol, 1997. 273 (4 Pt 1): p. E688-94.

24.     Mayo, M., Le point sur le diabète, une épidémie silencieuse , in Science & Vie . 2004. p. 100-113.

25.     De Meyts, P., Insulin and its receptor: structure, function and evolution. Bioessays, 2004. 26 (12): p. 1351-62.

26.     Capeau, J., [Insulin signaling: mechanisms altered in insulin resistance]. Med Sci (Paris), 2003. 19 (8-9): p. 834-9.

27.     Clark, M.G., et al., Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab, 2003. 284 (2): p. E241-58.

28.     Gaudreault, N., et al., Effects of insulin on regional blood flow and glucose uptake in Wistar and Sprague-Dawley rats. Metabolism, 2001. 50 (1): p. 65-73.

29.     Rattigan, S., M.G. Clark, and E.J. Barrett, Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes, 1997. 46 (9): p. 1381-8.

30.     Wallis, M.G., et al., Insulin-mediated hemodynamic changes are impaired in muscle of Zucker obese rats. Diabetes, 2002. 51 (12): p. 3492-8.

31.     Santure, M., et al., Induction of insulin resistance by high-sucrose feeding does not raise mean arterial blood pressure but impairs haemodynamic responses to insulin in rats. Br J Pharmacol, 2002. 137 (2): p. 185-96.

32.     Santure, M., et al., Effect of metformin on the vascular and glucose metabolic actions of insulin in hypertensive rats. Am J Physiol Gastrointest Liver Physiol, 2000. 278 (5): p. G682-92.

33.     Roberts, C.K., et al., A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. J Appl Physiol, 2005. 98 (1): p. 203-10.

34.     Duplain, H., et al., Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation, 2001. 104 (3): p. 342-5.

35.     Shankar, R.R., et al., Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes, 2000. 49 (5): p. 684-7.

36.     Zecchin, H.G., et al., Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance--the obese middle-aged and the spontaneously hypertensive rats. Diabetologia, 2003. 46 (4): p. 479-91.

37.     Horton H Robert, M.A.L., Ochs Raymond S, Rawn J David and Scrimgeour K Gray, Principles of biochemistry, Third Edition . A Pearson Company ed. 2002: Prentice-Hall inc.

38.     Leng, Y., H.K. Karlsson, and J.R. Zierath, Insulin signaling defects in type 2 diabetes. Rev Endocr Metab Disord, 2004. 5 (2): p. 111-7.

39.     Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288 (5789): p. 373-6.

40.     Ducrocq, C., et al., [Intervention by nitric oxide, NO, and its oxide derivatives particularly in mammals]. Can J Physiol Pharmacol, 2001. 79 (2): p. 95-102.

41.     Moncada, S., The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand, 1992. 145 (3): p. 201-27.

42.     Schiffrin, E.L., The endothelium and control of blood vessel function in health and disease. Clin Invest Med, 1994. 17 (6): p. 602-20.

43.     Andrew, P.J. and B. Mayer, Enzymatic function of nitric oxide synthases. Cardiovasc Res, 1999. 43 (3): p. 521-31.

44.     Walford, G. and J. Loscalzo, Nitric oxide in vascular biology. J Thromb Haemost, 2003. 1 (10): p. 2112-8.

45.     Domenico, R., Pharmacology of nitric oxide: molecular mechanisms and therapeutic strategies. Curr Pharm Des, 2004. 10 (14): p. 1667-76.

46.     Fayers, K.E., et al., Nitrate tolerance and the links with endothelial dysfunction and oxidative stress. Br J Clin Pharmacol, 2003. 56 (6): p. 620-8.

47.     Yki-Jarvinen, H., Insulin resistance and endothelial dysfunction. Best Pract Res Clin Endocrinol Metab, 2003. 17 (3): p. 411-30.

48.     Papapetropoulos, A., R.D. Rudic, and W.C. Sessa, Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res, 1999. 43 (3): p. 509-20.

49.     Hayden, M.R. and S.C. Tyagi, Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. Cardiovasc Diabetol, 2003. 2 (1): p. 2.

50.     Wheatcroft, S.B., et al., Vascular endothelial function and blood pressure homeostasis in mice overexpressing IGF binding protein-1. Diabetes, 2003. 52 (8): p. 2075-82.

51.     Fulton, D., et al., Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999. 399 (6736): p. 597-601.

52.     Busse, R., et al., Mechanisms of nitric oxide release from the vascular endothelium. Circulation, 1993. 87 : p. V18-V25.

53.     Zhang, Y., et al., AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol, 2006. 26 (6): p. 1281-7.

54.     Zou, M.H., et al., Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem, 2002. 277 (36): p. 32552-7.

55.     Shimabukuro, M., et al., Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest, 1997. 100 (2): p. 290-5.

56.     Lee, S.J., K. Beckingham, and J.T. Stull, Mutations at lysine 525 of inducible nitric-oxide synthase affect its Ca2+-independent activity. J Biol Chem, 2000. 275 (46): p. 36067-72.

57.     Schiffrin, E.L., Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension, 1995. 25 (6): p. 1135-43.

58.     Masaki, T., et al., Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation, 1991. 84 (4): p. 1457-68.

59.     Hopfner, R.L. and V. Gopalakrishnan, Endothelin: emerging role in diabetic vascular complications. Diabetologia, 1999. 42 (12): p. 1383-94.

60.     Yanagisawa, M. and T. Masaki, Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci, 1989. 10 (9): p. 374-8.

61.     Hu, R.M., et al., Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes, 1993. 42 (2): p. 351-8.

62.     Ferri, C., et al., Circulating endothelin-1 levels increase during euglycemic hyperinsulinemic clamp in lean NIDDM men. Diabetes Care, 1995. 18 (2): p. 226-33.

63.     Oliver, F.J., et al., Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem, 1991. 266 (34): p. 23251-6.

64.     Anfossi, G., et al., Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells. Metabolism, 1993. 42 (9): p. 1081-3.

65.     Cardillo, C., et al., Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation, 1999. 100 (8): p. 820-5.

66.     Hopfner, R.L., et al., Insulin and vanadate restore decreased plasma endothelin concentrations and exaggerated vascular responses to normal in the streptozotocin diabetic rat. Diabetologia, 1998. 41 (10): p. 1233-40.

67.     Piatti, P.M., et al., Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes, 1996. 45 (3): p. 316-21.

68.     Hopfner, R.L., et al., Insulin increases endothelin-1-evoked intracellular free calcium responses by increased ET(A) receptor expression in rat aortic smooth muscle cells. Diabetes, 1998. 47 (6): p. 937-44.

69.     Juan, C.C., et al., Overexpression of vascular endothelin-1 and endothelin-A receptors in a fructose-induced hypertensive rat model. J Hypertens, 1998. 16 (12 Pt 1): p. 1775-82.

70.     Takahashi, K., et al., Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia, 1990. 33 (5): p. 306-10.

71.     Caballero, A.E., et al., Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes, 1999. 48 (9): p. 1856-62.

72.     Piatti, P.M., et al., Relationship between endothelin-1 concentration and metabolic alterations typical of the insulin resistance syndrome. Metabolism, 2000. 49 (6): p. 748-52.

73.     Vigili de Kreutzenberg, S., et al., Visceral obesity is characterized by impaired nitric oxide-independent vasodilation. Eur Heart J, 2003. 24 (13): p. 1210-5.

74.     Cuevas, A.M. and A.M. Germain, Diet and endothelial function. Biol Res, 2004. 37 (2): p. 225-30.

75.     Bayraktutan, U., Free radicals, diabetes and endothelial dysfunction. Diabetes Obes Metab, 2002. 4 (4): p. 224-38.

76.     Poredos, P., Endothelial dysfunction and cardiovascular disease. Pathophysiol Haemost Thromb, 2002. 32 (5-6): p. 274-7.

77.     Forgione, M.A. and J. Loscalzo, Oxidant stress as a critical determinant of endothelial function. Drug News Perspect, 2000. 13 (9): p. 523-529.

78.     Thomas, S.R., K. Chen, and J.F. Keaney, Jr., Oxidative stress and endothelial nitric oxide bioactivity. Antioxid Redox Signal, 2003. 5 (2): p. 181-94.

79.     Wassmann, S., K. Wassmann, and G. Nickenig, Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension, 2004. 44 (4): p. 381-6.

80.     Maritim, A.C., R.A. Sanders, and J.B. Watkins, 3rd, Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003. 17 (1): p. 24-38.

81.     Di Virgilio, F., New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr Pharm Des, 2004. 10 (14): p. 1647-52.

82.     Griendling, K.K., D. Sorescu, and M. Ushio-Fukai, NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 2000. 86 (5): p. 494-501.

83.     Hwang, J., et al., Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res, 2003. 93 (12): p. 1225-32.

84.     Laight, D.W., M.J. Carrier, and E.E. Anggard, Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res, 2000. 47 (3): p. 457-64.

85.     Baba, T. and S. Neugebauer, The link between insulin resistance and hypertension. Effects of antihypertensive and antihyperlipidaemic drugs on insulin sensitivity. Drugs, 1994. 47 (3): p. 383-404.

86.     Hall, J.E., et al., Resistance to metabolic actions of insulin and its role in hypertension. Am J Hypertens, 1994. 7 (8): p. 772-88.

87.     Baron, A.D., et al., Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol, 1988. 255 (6 Pt 1): p. E769-74.

88.     DeFronzo, R.A., Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes, 1988. 37 (6): p. 667-87.

89.     DeFronzo, R.A. and E. Ferrannini, Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 1991. 14 (3): p. 173-94.

90.     Reaven, G.M., Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988. 37 (12): p. 1595-607.

91.     Gans, R.O. and A.J. Donker, Insulin and blood pressure regulation. J Intern Med Suppl, 1991. 735 : p. 49-64.

92.     Stern, M.P., Diabetes and cardiovascular disease. The "common soil" hypothesis. Diabetes, 1995. 44 (4): p. 369-74.

93.     Weisser, B., et al., Plasma insulin is correlated with blood pressure only in subjects with a family history of hypertension or diabetes mellitus: results from 11,001 participants in the Heureka Study. J Hypertens Suppl, 1993. 11 (5): p. S308-9.

94.     Hansen, P.A., et al., A high fat diet impairs stimulation of glucose transport in muscle. Functional evaluation of potential mechanisms. J Biol Chem, 1998. 273 (40): p. 26157-63.

95.     Srinivasan, K., et al., Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol, 2004. 26 (5): p. 327-33.

96.     Ribstein, J., G. DuCailar, and A. Mimran, [Arterial hypertension, hyperinsulinism and insulin resistance]. Presse Med, 1992. 21 (28): p. 1318-23.

97.     Yki-Jarvinen, H. and J. Westerbacka, Vascular actions of insulin in obesity. Int J Obes Relat Metab Disord, 2000. 24 Suppl 2 : p. S25-8.

98.     Papavramidou, N.S., S.T. Papavramidis, and H. Christopoulou-Aletra, Galen on obesity: etiology, effects, and treatment. World J Surg, 2004. 28 (6): p. 631-5.

99.     Molnar, D., T. Decsi, and B. Koletzko, Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes Relat Metab Disord, 2004. 28 (10): p. 1197-202.

100.     Laight, D.W., et al., Investigation of oxidant stress and vasodepression to glyceryl trinitrate in the obese Zucker rat in vivo. Br J Pharmacol, 1998. 125 (4): p. 895-901.

101.     Zucker, L.M. and H.N. Antoniades, Insulin and obesity in the Zucker genetically obese rat "fatty". Endocrinology, 1972. 90 (5): p. 1320-30.

102.     Bourgoin F, M.S., Badeau M, Pitre M, Bachelard H, Dysfunction endothéliale et résistance à l'insuline. Médecine Science, 2004. 20 (suppl 1): p. 20.

103.     Katakam, P.V., et al., Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol, 1998. 275 (3 Pt 2): p. R788-92.

104.     Reil, T.D., et al., Diet-induced changes in endothelial-dependent relaxation of the rat aorta. J Surg Res, 1999. 85 (1): p. 96-100.

105.     Roberts, C.K., et al., Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension, 2000. 36 (3): p. 423-9.

106.     Roberts, C.K., et al., Reversibility of chronic experimental syndrome X by diet modification. Hypertension, 2001. 37 (5): p. 1323-8.

107.     Perreault, M. and A. Marette, Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med, 2001. 7 (10): p. 1138-43.

108.     Bachelard, H.B., M. Bourgoin, F. Nadeau, A. Larivière, R., Insulin resistance and vascular function in high fat high sucrose (HFHS)-fed rats. Diabetes, 2005. 54 (Suppl 1 abstract #1785-P): p. A429.

109.     Taddei, S., et al., Mechanisms of endothelial disfuntion: clinical significance and preventive non-pharmacological therapeutic strategies. Current pharmaceutical design, 2003. 9 : p. 2385-2402.

110.     McIntyre, M., D.F. Bohr, and A.F. Dominiczak, Endothelial function in hypertension: the role of superoxide anion. Hypertension, 1999. 34 (4 Pt 1): p. 539-45.

111.     Cooke, C.L. and S.T. Davidge, Endothelial-dependent vasodilation is reduced in mesenteric arteries from superoxide dismutase knockout mice. Cardiovasc Res, 2003. 60 (3): p. 635-42.

112.     Lynch, S.M., et al., Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol, 1997. 17 (11): p. 2975-81.

113.     Richard, M.J., et al., [Glutathione peroxidases: value of their determination in clinical biology]. Ann Biol Clin (Paris), 1997. 55 (3): p. 195-207.

114.     Vertuani, S., A. Angusti, and S. Manfredini, The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des, 2004. 10 (14): p. 1677-94.

115.     Azzi, A., et al., The role of alpha-tocopherol in preventing disease: from epidemiology to molecular events. Mol Aspects Med, 2003. 24 (6): p. 325-36.

116.     Arcaro, G., et al., Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation, 2002. 105 (5): p. 576-82.

117.     Warnholtz, A. and T. Munzel, Why do antioxidants fail to provide clinical benefit? Curr Control Trials Cardiovasc med, 2000. 1 (1): p. 38-40.

118.     Samuni, A., et al., Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc, 2002. 124 (29): p. 8719-24.

119.     Hahn, S.M., et al., Hemodynamic effect of the nitroxide superoxide dismutase mimics. Free Radic Biol Med, 1999. 27 (5-6): p. 529-35.

120.     Zollner, S., et al., Nitroxides increase the detectable amount of nitric oxide released from endothelial cells. J Biol Chem, 1997. 272 (37): p. 23076-80.

121.     Glebska, J., et al., Structure-activity relationship studies of protective function of nitroxides in Fenton system. Biometals, 2001. 14 (2): p. 159-70.

122.     Samuni, A., et al., Superoxide reaction with nitroxides. Free Radic Res Commun, 1990. 9 (3-6): p. 241-9.

123.     Hahn, S.M., J.B. Mitchell, and E. Shacter, Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage. Free Radic Biol Med, 1997. 23 (6): p. 879-84.

124.     Matsumoto, K., M.C. Krishna, and J.B. Mitchell, Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol Exp Ther, 2004. 310 (3): p. 1076-83.

125.     Mitchell, J.B., et al., Biologically active metal-independent superoxide dismutase mimics. Biochemistry, 1990. 29 (11): p. 2802-7.

126.     Onuma, S. and K. Nakanishi, Superoxide dismustase mimetic tempol decreases blood pressure by increasing renal medullary blood flow in hyperinsulinemic-hypertensive rats. Metabolism, 2004. 53 (10): p. 1305-8.

127.     Touyz, R.M., et al., Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens, 2004. 22 (6): p. 1141-9.

128.     Puntmann, V.O., et al., Role of oxidative stress in angiotensin-II mediated contraction of human conduit arteries in patients with cardiovascular disease. Vascul Pharmacol, 2005. 43 (4): p. 277-82.

129.     Metz, J.M., et al., A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res, 2004. 10 (19): p. 6411-7.

130.     Schnackenberg, C.G. and C.S. Wilcox, The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int, 2001. 59 (5): p. 1859-64.

131.     Tatchum-Talom, R. and D.S. Martin, Tempol improves vascular function in the mesenteric vascular bed of senescent rats. Can J Physiol Pharmacol, 2004. 82 (3): p. 200-7.

132.     D'Amours, M., et al., Renal and vascular effects of chronic nitric oxide synthase inhibition: involvement of endothelin 1 and angiotensin II. Can J Physiol Pharmacol, 1999. 77 (1): p. 8-16.

133.     Pitre, M., A. Nadeau, and H. Bachelard, Insulin sensitivity and hemodynamic responses to insulin in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol, 1996. 271 (4 Pt 1): p. E658-68.

134.     Haywood, J.R., et al., Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat. Am J Physiol, 1981. 241 (2): p. H273-8.

135.     Wright, C.E., J.A. Angus, and P.I. Korner, Vascular amplifier properties in renovascular hypertension in conscious rabbits. Hindquarter responses to constrictor and dilator stimuli. Hypertension, 1987. 9 (2): p. 122-31.

136.     DeFronzo, R.A., J.D. Tobin, and R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol, 1979. 237 (3): p. E214-23.

137.     Pacini, G. and A. Mari, Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract Res Clin Endocrinol Metab, 2003. 17 (3): p. 305-22.

138.     Böger, R.H., et al., Dietary L-arginine and alpha-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis, 1998. 141 : p. 31-43.

139.     Jiang, F., et al., Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein(E)-deficient mice. Br J Pharmacol, 2003. 139 (6): p. 1127-34.

140.     Keaney, J.F., Jr., et al., Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest, 1994. 93 (2): p. 844-51.

141.     Thirunavukkarasu, V. and C.V. Anuradha, Influence of alpha-lipoic acid on lipid peroxidation and antioxidant defence system in blood of insulin-resistant rats. Diabetes Obes Metab, 2004. 6 (3): p. 200-7.

142.     Thirunavukkarasu, V., A.T. Anitha Nandhini, and C.V. Anuradha, Cardiac lipids and antioxidant status in high fructose rats and the effect of alpha-lipoic acid. Nutr Metab Cardiovasc Dis, 2004. 14 (6): p. 351-7.

143.     Teachey, M.K., et al., Interactions of conjugated linoleic acid and lipoic acid on insulin action in the obese Zucker rat. Metabolism, 2003. 52 (9): p. 1167-74.

144.     Ongini, E., et al., Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci U S A, 2004. 101 (22): p. 8497-502.

145.     Burgaud, J.L., E. Ongini, and P. Del Soldato, Nitric oxide-releasing drugs: a novel class of effective and safe therapeutic agents. Ann N Y Acad Sci, 2002. 962 : p. 360-71.

146.     Mugge, A., et al., Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res, 1991. 69 (5): p. 1293-300.

147.     Doctrow, S.R., et al., Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem, 2002. 45 (20): p. 4549-58.

© Mylene Badeau, 2006