Chargement...
[Précédent] [Suivant] [Retour aux résultats]
Spatio-temporal coverage optimization of sensor networks


:
:

De courts extraits de mémoires ou thèses peuvent être copiés sans l’autorisation de l’auteur à condition que celui-ci soit dûment cité. Afin de respecter le droit d’auteur, celui-ci doit autoriser préalablement tout emprunt dépassant l’utilisation équitable .
Lien permanent:  
Résumé:

Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.

Abstract:

Sensor networks consist in a set of devices able to individually capture information on a given environment and to exchange information in order to obtain a higher level representation on the activities going on in the area of interest. Such a distributed sensing with many devices close to the phenomena of interest is of great interest in domains such as surveillance, agriculture, environmental monitoring, industrial monitoring, etc. We are proposing in this thesis several approaches to achieve spatiotemporal optimization of the operations of these devices, by determining where to place them in the environment and how to control them over time in order to sense the moving targets of interest. The first novelty consists in a realistic sensing model representing the coverage of a sensor network in its environment. We are proposing for that a probabilistic 3D model of sensing capacity of a sensor over its surrounding area. This model also includes information on the environment through the evaluation of line-of-sight visibility. From this sensing model, spatial optimization is conducted by searching for the best location and direction of each sensor making a network. For that purpose, we are proposing a new algorithm based on gradient descent, which has been favourably compared to other generic black box optimization methods in term of performance, while being more effective when considering processing requirements. Once the sensors are placed in the environment, the temporal optimization consists in covering well a group of moving targets in the environment. That starts by predicting the future location of the mobile targets detected by the sensors. The prediction is done either by using the history of other targets who traversed the same environment (long term prediction), or only by using the previous displacements of the same target (short term prediction). We are proposing new algorithms under each category which outperformed or produced comparable results when compared to existing methods. Once future locations of targets are predicted, the parameters of the sensors are optimized so that targets are properly covered in some future time according to the predictions. For that purpose, we are proposing a heuristics for making such sensor control, which deals with both the probabilistic targets trajectory predictions and probabilistic coverage of sensors over the targets. In the final stage, both spatial and temporal optimization method have been successfully integrated and applied, demonstrating a complete and effective pipeline for spatiotemporal optimization of sensor networks.

Langue:  
Mots clés:  
Numéro unique:   
Version 2.3