Chargement...
[Précédent] [Suivant] [Retour aux résultats]
Tensor-based regression models and applications


:

De courts extraits de mémoires ou thèses peuvent être copiés sans l’autorisation de l’auteur à condition que celui-ci soit dûment cité. Afin de respecter le droit d’auteur, celui-ci doit autoriser préalablement tout emprunt dépassant l’utilisation équitable .
Lien permanent:  
Résumé:

Avec l’avancement des technologies modernes, les tenseurs d’ordre élevé sont assez répandus et abondent dans un large éventail d’applications telles que la neuroscience informatique, la vision par ordinateur, le traitement du signal et ainsi de suite. La principale raison pour laquelle les méthodes de régression classiques ne parviennent pas à traiter de façon appropriée des tenseurs d’ordre élevé est due au fait que ces données contiennent des informations structurelles multi-voies qui ne peuvent pas être capturées directement par les modèles conventionnels de régression vectorielle ou matricielle. En outre, la très grande dimensionnalité de l’entrée tensorielle produit une énorme quantité de paramètres, ce qui rompt les garanties théoriques des approches de régression classique. De plus, les modèles classiques de régression se sont avérés limités en termes de difficulté d’interprétation, de sensibilité au bruit et d’absence d’unicité. Pour faire face à ces défis, nous étudions une nouvelle classe de modèles de régression, appelés modèles de régression tensor-variable, où les prédicteurs indépendants et (ou) les réponses dépendantes prennent la forme de représentations tensorielles d’ordre élevé. Nous les appliquons également dans de nombreuses applications du monde réel pour vérifier leur efficacité et leur efficacité.

Abstract:

With the advancement of modern technologies, high-order tensors are quite widespread and abound in a broad range of applications such as computational neuroscience, computer vision, signal processing and so on. The primary reason that classical regression methods fail to appropriately handle high-order tensors is due to the fact that those data contain multiway structural information which cannot be directly captured by the conventional vector-based or matrix-based regression models, causing substantial information loss during the regression. Furthermore, the ultrahigh dimensionality of tensorial input produces huge amount of parameters, which breaks the theoretical guarantees of classical regression approaches. Additionally, the classical regression models have also been shown to be limited in terms of difficulty of interpretation, sensitivity to noise and absence of uniqueness. To deal with these challenges, we investigate a novel class of regression models, called tensorvariate regression models, where the independent predictors and (or) dependent responses take the form of high-order tensorial representations. We also apply them in numerous real-world applications to verify their efficiency and effectiveness. Concretely, we first introduce hierarchical Tucker tensor regression, a generalized linear tensor regression model that is able to handle potentially much higher order tensor input. Then, we work on online local Gaussian process for tensor-variate regression, an efficient nonlinear GPbased approach that can process large data sets at constant time in a sequential way. Next, we present a computationally efficient online tensor regression algorithm with general tensorial input and output, called incremental higher-order partial least squares, for the setting of infinite time-dependent tensor streams. Thereafter, we propose a super-fast sequential tensor regression framework for general tensor sequences, namely recursive higher-order partial least squares, which addresses issues of limited storage space and fast processing time allowed by dynamic environments. Finally, we introduce kernel-based multiblock tensor partial least squares, a new generalized nonlinear framework that is capable of predicting a set of tensor blocks by merging a set of tensor blocks from different sources with a boosted predictive power.

Langue:  
Mots clés:  
Numéro unique:   
Version 2.3